II Fibrations
A Locally Trivial Fibrations
a fiber bundle (or locally trivial fibration or fibration) is a 4 -tuple (E, B, F, ρ) where
E, B, F are topological spaces and $p: E \rightarrow B$ is a continuous map such that for all $x \in B, \exists$ an open set $U \subset B$ and a homeomorphism $\phi: p^{-1}(U) \rightarrow U \times F$ st. $\pi_{1} \circ \phi=\rho$

E is called the total space
B " " base space
F " " fiber
P " " projection
$\phi: P^{-1}(U) \rightarrow U \times \mathbb{R}$ is called a local trivialization
examples: 1) $E=B \times F$ a product space
2) Möbius band
$M=\mathbb{R} \times \mathbb{R} /(x, y) \sim(x+1,-y) \quad$ let $q: \mathbb{R} \times \mathbb{R} \rightarrow M$ be the quotient map
note: every $(x, y) \in \mathbb{R} \times \mathbb{R}$ in M is equivalent to a point in $[0,1] \times \mathbb{R}$
there are no identifications in $(0,1) \times \mathbb{R}$
but $\{1\} \times \mathbb{R}$ is identified with $\{0\} \times \mathbb{R}$
by $y \mapsto-y$
now $\pi_{1}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ induces a map

$$
P: M \rightarrow S^{\prime}=\mathbb{R} / x \mapsto x+1
$$

given $x \in S$ " if it is "in " $(0,1)$ then consider
$\left.q\right|_{(0,1) \times \mathbb{R}}:(0,1) \times \mathbb{R} \rightarrow M$ is an embedding
let $\phi: \underbrace{q((0,1) \times \mathbb{R})}_{\left.p^{-1}(0,1)\right)} \rightarrow(0,1) \times \mathbb{R}$ be its inverse
so $\quad p^{-4}(0,1) \xrightarrow{\phi}(0,1) \times \mathbb{R}$ is a local miviolizetion

$$
p \bigvee_{(0,1)}<\pi
$$

similarly if $x \in S^{\prime} / s^{\prime \prime}$ in" $(1 / 2,3 / 2)$ can use

$$
\left.q\right|_{(1 / 2,3 / 2) \times \mathbb{R}}
$$

So $p: M \rightarrow S^{\prime}$ is a fiber bundle
3) $S^{2 n-1}=$ unit sphere in \mathbb{C}^{n}
recall $S^{\prime} \subset \mathbb{C}$ (unit circle) acts on $5^{2 n-1}$
by $s^{1} \times s^{2 n-1} \rightarrow s^{2 n-1}:\left(\lambda,\left(z_{1} \ldots z_{n}\right)\right)=\left(\lambda z_{1}, \ldots \lambda z_{n}\right)$
exencise/recall: $s^{2 n-1} / s^{\prime} \cong \mathbb{C} P^{n-1}$
exencré: show $S^{\prime} \rightarrow S^{2 n-1}$ $I_{\text {is a fiber bundle }}$ $\mathbb{C P n}$
4) in general if G is a Lie group (recall this means G is a smooth manifold and a group such that products and inverses are smooth maps) and H is a compact subgroup of G
then $H \rightarrow G$
\downarrow is a fiber bundle
6/4
exencose: prove this $\begin{gathered}\text { invertable } \\ n \times n \text { matrices } \\ \text { with Rantings }\end{gathered}$
egg. recall $O(n)=\{A \in G L(n, \mathbb{R}):\langle A x, A y\rangle=\{k, y\rangle\}$
orthogonal group

$$
=\left\{A \in G L(n, \mathbb{R}): A^{\top}=A^{-1}\right\}
$$

special $\longrightarrow S O(n)=\{A \in O(n): \operatorname{det} A=1\}$ orthogonal group
recall: from differential topology
we know $O(n)$ and so (n)
hove dimension $\frac{n(n-1)}{2}$ and $O(n)$ has two components with $S O(n)$ the identity copt.
exercise: $S O(1)=\{1\}$

$$
\begin{aligned}
& S O(2) \cong S^{\prime} \\
& S O(3) \cong \mathbb{R} P^{3}
\end{aligned}
$$

a) $S O(n) \rightarrow S O(n+1)$
\downarrow

$$
s O(n+1) / s o(n) \cong s^{n}
$$

here $S O(n)<S O(n+1)$

$$
A \longmapsto\left(\begin{array}{ccc}
1 & 0 & \cdots \\
0 & 0 \\
\vdots & A
\end{array}\right)
$$

exencose: prove this
hint: note first column of $B \in S O(n+1)$ is on elt of s^{n}

b) let $V_{n, k}=$ orthogonal k-frames is \mathbb{R}^{n}
exercise: $V_{n, k}=O(n) / O(n-k)$ \& Called the steifel $m f d$
so $O(n-k) \rightarrow O(n)$
\downarrow is a fiber bundle

$$
V_{n, k}
$$

note thus implies

$$
\begin{aligned}
& V_{n_{1 n}} \cong O(n) \\
& V_{n, 1} \cong S^{n-1} \\
& V_{n, n-1} \cong S O(n)
\end{aligned}
$$

for $k<n$ can also show $V_{n, k} \cong S 0(n) /$ so (n-k)
c) $G_{n, k}=k$-dimenscinol planes in \mathbb{R}^{n} Grassmannián

$$
\text { exercise: } G_{n, k}=\frac{O(n)}{O(k) \times O(n-k)}
$$

invertable matrices \quad presences Hermitioninnen product
5) recall $U(n)=\{A \in G L(n ; \mathbb{C}):\langle A v, A u\rangle=\langle v, u\rangle\}$
unitary group

$$
=\left\{A \in G L(n ; \mathbb{C}): \bar{A}^{\top}=A^{-1}\right\}
$$

special unitary $S U(n)=\{A \in U(n): \operatorname{det} A=1\}$ group
recall: from differential topology we know $U(n)$ is a manifold of dimension n^{2} and $\operatorname{su}(n)$ of dinienscon $n^{2}-1$

$$
S U(n) \rightarrow U(n)
$$

is is a bundle
exencisé: $U(1) \cong S^{\prime}$

$$
\begin{aligned}
& s u(2)=S^{3} \\
& u(2)=S^{3} \times S^{1}
\end{aligned}
$$

a) $\quad \operatorname{SU}(n) \rightarrow \operatorname{SU}(n+1)$
\downarrow

$$
\operatorname{su}(n+1) / \operatorname{su}(n) \cong S^{2 n+1}
$$

where $S U(n) \longrightarrow S U(n+1)$
$A \longmapsto\left(\begin{array}{ll}A & 0 \\ 0 & 1\end{array}\right)$
exencie: prove this
b) let $V_{n, k}(\mathbb{C})=$ orthogonal k-frames is \mathbb{C}^{n}
exercise: $V_{n, k}(a)=U(n) / U(n-k)$
c) $G_{n, k}(\mathbb{C})=k$-dimensional planes in \mathbb{R}^{n}
exercise: $G_{n}(\mathbb{C})=\frac{U(n)}{U(k) \times U(n-k)}$
6) if $f: M \rightarrow N$ is a smooth map such that
i) f is surjective
ii) f is a submersion
iii) f is proper (automatic if M compact) presinage of compact is compact
then $f^{-1}(\rho) \longrightarrow M$
$\downarrow f$ is a fiber bundle for any
N

$$
p \in N
$$

this is Ehresmann's lemma
7) Vector bundles are fiber bundles with fiber \mathbb{R}^{k} or \mathbb{C}^{k} (with extra "structure", see later in notes)
eg.
a) $\begin{array}{cc}T M & b\end{array} T^{*} M$
c) $N^{1} \subset M^{m}$ a submit $\nu(N)=$ normal bundle $\mathbb{R}^{n-n} \rightarrow \underset{\downarrow}{\nu}(N)$
N
8) covening spaces $\underset{M}{\tilde{M}}$ is o bundle with discrete fiber
given a fiber bundle $E \xrightarrow{p} B$ and a map $f: A \rightarrow B$ the pull-back of E to A is

$$
f^{*} E=\{(a, e) \in A \times E: f(a)=p(e)\}
$$

define $p: f^{*} E \rightarrow A:(a, e) \longmapsto a$
exercise: 1) show $f^{*} E \rightarrow A$ is a fiber bundle with same fiber as $E \xrightarrow{P} B$
2) if A is a subset of B and $f: A \rightarrow B$ is inclusion, then show $f^{*} E=E l_{A}$ ie $E l_{A}=P^{-1}(A)$
3) $\tilde{f}: f^{*} E \rightarrow E:(a, e) \rightarrow e$ is a bundle map
4) if $E=B \times F$ then $f^{*} E \cong A \times F$

Hint: $f^{*} E$ is $\Gamma \times F$ where Γ is the graph of f in $A \times B$ and $\Gamma \cong A$
if $E \xrightarrow{P} B$ and $E^{\prime} \xrightarrow{\prime} B$ are bundles we say they are bundle isomorphic if \exists a homeomorphism $h: E \rightarrow E^{\prime}$ such that

$$
\begin{aligned}
& E \xrightarrow{n} E^{\prime} \\
& p \searrow_{B}^{0} \ell P^{\prime}
\end{aligned}
$$

denote this $E \cong E^{\prime}$
Th ${ }^{m}$ 1: \qquad
If $f_{i}: A \rightarrow B, 1=0,1$, are homotopic and A is a $C W$ complex, \longleftarrow can weaken then $f_{0}^{*} E \cong f_{1}^{*} E$
this is a corollary of
The 2 (Covering Homotopy Property)
let $P_{0}: E \rightarrow B$ and $q: Z \rightarrow Y$ be fiber bundles with the same fiber F
suppose B is normal and locally compact given $\tilde{h}_{0}: E \rightarrow Z$ and $h_{0}: B \rightarrow Y$ such that $E \xrightarrow{\breve{h}_{0}} Z$
Pol $\dot{h}_{0} 1^{9}$ commute
$B \xrightarrow{h_{0}} Y$ (called a bundle map)
and $H: B \times[0,1] \rightarrow Y$ a homotopy of h_{0}
then \exists a homotopy $\tilde{H}: E \times[0,1] \rightarrow Z$ of bundle maps covering H

Proof of $\pi^{m}-2$:
we assume B is compact (and leave the locally compact case as an exercise)
Idea: break Z into pieces where the bundle is trivial UXF
th 3 is clear hear,
then we put the homotopies together
details: let $\left\{V_{\beta}\right\}$ be a coven of Y by locally trivial charts, so we hove

$$
q^{-1}\left(V_{\beta}\right) \xrightarrow{\cong} V_{\beta} \times F
$$

$\left\{H^{-1}\left(V_{\beta}\right)\right\}$ is an open cover of $B \times[0,1]$
since B is compact we hove a finite
subcoven, and in particular
we hove a finite number of open
sets $\left\{U_{\alpha} \times I_{j}\right\}$ covering $B \times[0,1]$
st. $H\left(U_{\alpha} \times I_{j}\right) \subset V_{\beta}$ sore β
Cote $H^{*} E$ is trivial oren $V_{\alpha}{ }^{*} I_{j}$ by exencise above)
here we can take the $I_{\text {; }}$

we inductively assume we hare constructed
the lift $\tilde{H}: E \times\left[0, t_{l}\right] \rightarrow Z$
and extend to $E \times\left[0, t_{e+1}\right]$ (note: Exibg done)
for each $x \in B$ anbhds W, W^{\prime} st.

$$
x \in W \subset \bar{W} \subset W^{\prime} \quad \begin{aligned}
& \text { here we } \\
& \text { use normal }
\end{aligned}
$$

and $\bar{W}^{\prime} \subset U_{i}$ for some i
choose a finite number of the $\left\{w_{i} w_{i}^{\prime}\right\}_{n=1}^{s}$ st the $\left\{w_{i}\right\}$ coven B

Urysohn's leman $\Rightarrow \exists$ maps

$$
\begin{aligned}
& \quad u_{i}: B \rightarrow\left[t_{l}, t_{l+1}\right] \\
& \text { st. } u_{i}\left(\bar{w}_{i}\right)=t_{l+1} \text { and } u_{i}\left(B-w_{l}^{\prime}\right)=t_{l}
\end{aligned}
$$

set $\tau_{0}(x)=t_{l}$ and

$$
\tau_{i}(x)=\max \left\{u_{1}(x), \ldots, u_{i}(x)\right\}
$$

note $\quad t_{l}=\tau_{0}(x) \leq \tau_{1}(x) \leq \ldots \leq \tau_{s}(x)=t_{l+1}$
set $B_{i}=\left\{(x, t) \in B_{x}[0.1]: t_{l} \leq t \leq \tau_{i}(x)\right\}$
so

$$
B_{0}=\left.\right|_{B \times\left\{t_{l}\right\}} B_{i}=\underbrace{1 / 1}_{B \times[1+1}
$$

$$
B_{s}=B \times\left[t_{l,} t_{l+1}\right]
$$

and E_{i} to be the part of $E \times[0,1]$ oven B_{i}
so $E \times\left\{t_{l}\right\}=E_{0} \subseteq E_{1} \subseteq \ldots \subseteq E_{s}=E \times\left[t_{l}, t_{l+1}\right]$ we hove assumed \tilde{H} is defined on $E \times[0, t]$ so it is defiried on $E \times\left\{t_{l}\right\}=E_{0}$ we now inductively extend \tilde{H} oven E_{i}.
note: if $(x, t) \subseteq B_{i}-B_{1-1}$ then

$$
\begin{aligned}
& \tau_{l-1}(x)<t \leq \tau_{i}(x) \\
\text { so } & u_{i}(x)>\tau_{l-1}(x) \\
\therefore & (x, t) \in w_{i}^{\prime} \times\left[t_{l,} t_{l+1}\right] \\
\text { by def } & =w_{l}^{\prime} \times\left[t_{l,} t_{l+1}\right] \subset U_{\alpha} \times I_{k}
\end{aligned}
$$

$$
\text { so } H\left(B_{1}-B_{1-1}\right) \subset V_{\beta} \text { some } \beta
$$

$$
\text { where } q^{-1}\left(V_{\beta}\right) \xrightarrow{\phi_{\beta}} V_{\beta} \times F
$$

let $\rho_{\beta}: q^{-1}\left(V_{\beta}\right) \rightarrow F$ be ϕ_{β}
composed with projection
now for $(e, t) \in E_{2}-E_{2-1}$
with $p(e)=x \in B$
set $\tilde{H}(e, t)=\phi_{\alpha}^{-1}\left(H(x, t), \rho_{\beta}\left(\tilde{H}\left(e, \tau_{i-1}(x)\right)\right)\right)$
exercise: check this extends \tilde{H}
Proof of $\pi \underline{m}$ 1:
let $f_{2}: A \rightarrow B$ be as in statement of th $\frac{m}{}$
$H: A \times[0,1] \rightarrow B$ a homotopy f_{0} to f_{1}
now

so by $T_{h}{ }^{m} 2 \exists$ a homotopy \tilde{H}

$$
\begin{array}{rl}
f_{0}^{*}(E) \times[0,1] & \xrightarrow[H]{H} \\
L & E \\
A \times[0,1] & \xrightarrow{H} \\
\mathcal{B}^{P}
\end{array}
$$

this induces a map
where $\bar{H}((x, e), t)=(x, t, \tilde{H}(x, e, t))$
note \bar{H} is a bundle isomorphism since it induces identity on base and all fibers
restricting \bar{H} to $f_{0}^{*}(E) \times\{1\}$ gives a bundle isomorphism $f_{0}^{*}(E) \xrightarrow{\mathbb{H}} f_{1}^{*}(E)$

$$
\stackrel{\downarrow}{A \times\{1\}} \xrightarrow{\dot{d}} \stackrel{\downarrow}{A \times\{1\}}
$$

Corollary 3:
If X is contractible (and locally compact and normal), then any fiber bundle $E \rightarrow X$
is trivial $E X \times F$

Proof: X contractible means the identity map $f_{0}: X \rightarrow X$ is homotopic to a constant map $f_{1}: X \rightarrow X$

$$
\therefore f_{0}^{*}(E) \underset{\substack{\text { exercise }}}{ } \cong \underset{\jmath_{1}^{*}(E)}{\substack{\text { exercise }}}=x \times F
$$

B Serve Fibrations
a continuous map $\rho: E \rightarrow B$ is called a fibration (or a serve fibration) if it has the homotopy lifting property (HLP) : given a function $\tilde{g}: Y \rightarrow E$ and a homotopy $G: Y \times[0,1] \longrightarrow B$ of $\rho \circ \tilde{g}$ (ie. $G(y, 0)=p \circ \tilde{g}(y))$
then \exists a homotopy $\tilde{\sigma}: Y \times[0,1] \rightarrow E$
such that po $\tilde{G}=G$

note: Th $^{\text {m }} 2$ says a locally trivial fibration is a fibration
indeed: note $Y \rightarrow Y: y \mapsto y$ is a bundle with fiber $\{p t\}$, so $T_{h} \underline{m} 2 \Rightarrow H L P$
exencise: If $p: E \rightarrow B$ is a fibration and $f: x \rightarrow B$ is continuous, then show $p_{f}: f^{*} E \rightarrow X$ is a fibration where

$$
f^{*} E=\{(x, e) \in X \times E: p(x)=f(e)\}
$$

and
T called the pull-back bundle

Th色4:
If $p: E \rightarrow B$ is a serve fibration and $x_{0}, x, \in B$ are in the same path component, then $p^{-1}\left(x_{0}\right)$ and $\rho^{-1}\left(x_{1}\right)$ are homotopy equivalent (so up to homotopy fibrations hove fibers)

Proof: let $F_{i}=\rho^{-1}\left(x_{i}\right)$
and γ a path from x_{0} to x_{1}

so we can lift to get a homotopy

$$
F_{0} \times[0,1] \xrightarrow{A^{\gamma}} E
$$

and $A_{1}^{r}: F_{0} \rightarrow F_{1}$ is a continuous map
Claim: if γ_{0} and γ_{1} are homotopic rel end points
then $A^{\gamma_{0}}$ and $A^{\gamma_{1}}$ are homotopic and
hence $A_{1}^{\gamma_{0}} \simeq A^{\gamma_{1}}$
assume the claim for now, then

$$
\begin{aligned}
& A_{1}^{\gamma}: F_{0} \rightarrow F_{1} \\
& A_{1}^{\gamma-1}: F_{1} \rightarrow F_{0} \\
& A_{1}^{\gamma} \circ A_{1}^{\gamma-1} \text { comes from lifting } \alpha^{-1} * \alpha \\
& \text { so } A_{1}^{\gamma} \circ A_{1}^{\gamma^{-1}} \simeq A^{\text {const }}=1 d_{F_{1}} \\
& \text { similarly } A_{1}^{\gamma-1} \circ A_{1} \simeq i d F_{0} \\
& \therefore F_{0} \simeq F_{1}
\end{aligned}
$$

Proof of Claim: let $H:[0,1] \times[0,1] \rightarrow B$ be the homotogy γ_{0} to γ_{1}

Consider

$$
\Lambda: F_{0} \times[0,1] \times[0,1] \rightarrow B:(e, s, t) \mapsto H(s, t)
$$

we want to lift to E

$\left.\begin{array}{l}\text { on } F_{0} \times[0.1] \times\{0\} \rightarrow E \text { by } \underline{A}^{\gamma_{0}} \\ \text { on } F_{0} \times\{0.1] \times\{1\} \rightarrow E \text { by } \underline{A}^{\gamma_{1}} \\ \text { on } F_{0} \times\{0\} \times[0,1] \rightarrow E:(e, 0,5) \rightarrow e\end{array}\right\} \begin{gathered}\text { call } \\ G\end{gathered}$
set $C=([0,1] \times\{0,1\}) \cup(\{0\} \times[0,1]) \subset[0,1] \times[0,1]$
\exists a homeomorphism $f:[0,1] \times[0,1] \rightarrow[0,1] \times[0,1]$
taking C to $[0,1] \times\{0\}$

now we see

$$
\begin{aligned}
& F_{0} \times[0,1] \times\{0\} \stackrel{i d f_{0} \times f}{\rightleftarrows} F_{0} \times C \xrightarrow{G} E \\
& \downarrow i \quad \downarrow i \quad \downarrow \rho \\
& F_{0} \times[0,1] \times[0,1] \underset{i i F_{0}^{*} f}{\rightleftarrows} F_{0} \times[0,1] \times[0,1] \xrightarrow{\wedge} B
\end{aligned}
$$

note $1 d f_{0} \times f$ is a homeomorphism and so we get

so the HLP say there is a lift composing with $1 d_{F_{0}} \times f$ we get

$$
\begin{gathered}
F_{0} \times C \xrightarrow{G} E \\
i \downarrow \\
F_{0} \times[a \mid \times[0,1] \xrightarrow{-} \xrightarrow{n} B P
\end{gathered}
$$

So $\tilde{\Lambda}$ is a homotopy from $A^{\gamma_{0}}$ to $A^{\gamma_{1}}$ and $\left.\tilde{\Lambda}\right|_{F_{0} \times\{1\} \times[0,1]}$ is a homotopy from $A_{1}^{\gamma_{0}}$ to $A_{2}^{\gamma_{1}}$
example: let $\left(X, x_{0}\right)$ be a based topological space
set $P(x)=C\left([[0,1],\{0\}),\left(x, x_{0}\right)\right)$

$$
=\{\text { continuous maps } f:[0,1] \rightarrow x
$$

with $\left.f(0)=x_{0}\right\}$
and $p: P(x) \rightarrow x: \gamma \longmapsto \gamma(1)$
lemma 5:
$p: P(x) \rightarrow X$ is a fibration and $P(x)$ is contractible

Proof: we check the HLP given

$$
\begin{array}{ll}
Y \times\{0] & \xrightarrow{f_{0}} P(x) \\
\downarrow & \\
Y \times[0,1] & F \\
X
\end{array}
$$

then define $\tilde{F}: Y \times[0,1] \rightarrow P(x)$
by for $(y, s) \in Y_{x}[0,1]$,

$$
f(y, t):[0,1] \rightarrow X: t \mapsto \begin{cases}\left(f_{0}(y)\right)\left(\frac{2 t}{2-5}\right) & \text { for } t \in\left[0, \frac{2-5}{2}\right] \\ F(y, 2 t-2+5) & \text { for } t \in\left[\frac{2-5}{2}, 1\right]\end{cases}
$$

note: 1) well-defined since

$$
\begin{aligned}
& f_{0}(y)\left(\frac{2\left(\frac{2-5}{2}\right)}{2}\right)=f_{0}(y)(1) \text { and } \\
& F\left(y, 2\left(\frac{2-5}{2}\right)-z+5\right)=F(y, 0)
\end{aligned}
$$

and since po $f_{0}=F$ there are same
2) $\tilde{F}(y, 0)(t)=f_{0}(y)(t)$
3) $\tilde{F}(y, s)(0)=f_{0}(y)(0)=x_{0}$
4) $p \circ \tilde{F}(y, s)=\tilde{F}(y, s)(1)=F(y, s)$

So Fa lift!
now $P(x)$ is contractible, since $[0.1]$ is indeed

$$
\begin{aligned}
H: P(x) \times[0.1] & \longrightarrow P(x) \\
(\gamma, s) & \longmapsto \gamma((1-s) t)
\end{aligned}
$$

is the strong deformation retraction to the constant path
note: $P^{-1}\left(x_{0}\right)=\Omega(X)$ the loop space of X

$$
\therefore p^{-1}(x) \simeq \Omega(x) \text { for all } x \in X \operatorname{cif} x
$$ is path connected)

so $\Omega(x) \rightarrow p(x)$

$$
\int_{x}^{p} \text { is a fibration }
$$

example: given any continuous map $f: X \rightarrow Y$ earlier we saw f is homotopic to an inclusion.
Recall, if $C_{f}=(x \times[0,1]) \cup y /(x, 0) \sim f(x)$ is mopping cylinder
then $Y \simeq C_{f}$ and

so upto homotopy $X \subset Y$
Now let $E=C(([0,1],\{0\}),(Y, X))$

$$
\begin{aligned}
& =\text { paths in } Y \text { starting in } X \\
B= & C(((\{0,1\},\{0\}),(Y, X)) \\
& =X \times Y
\end{aligned}
$$

exencise: $E \longrightarrow Y: \gamma \longmapsto \gamma(1)$ is a fibration (proof very similar to proof of lemma 5)
note: $E \simeq X$ (just as we proved $P(X)$ is contractible)

$$
\begin{aligned}
& \begin{aligned}
\therefore \quad X & \simeq E \\
Z & \downarrow P \\
Y & =Y
\end{aligned} \\
& \text { so } f=\text { inclusion } \\
& \simeq p \text { a vibration }
\end{aligned}
$$

Slogan: any map is a fibration (upton homotopy)
lemma 6:

then $\pi_{n}(E, F) \cong \pi_{n}(B)$

Proof: let b_{0} be the base point in B $F=P^{-1}\left(b_{0}\right)$ and $e_{0} \in F$ a base point given $f:\left(D^{n}, \partial D^{n}\right) \longrightarrow(E, F)$
then $p \circ f:\left(D^{n}, \partial D^{n}\right) \rightarrow\left(B, b_{0}\right)$
so p induces a map

$$
\rho_{*}: \pi_{n}(E, F) \rightarrow \pi_{n}\left(B, b_{0}\right)
$$

exercise: p_{*} is well-defined and o homomorphism
Claim: p_{*} is surjective
given $g:\left(D_{1}^{n} \partial D^{n}\right) \rightarrow\left(B, b_{0}\right)$
think of D^{n} as $D^{n-1} \times[0,1]$
define $\tilde{g}_{0}: D^{n-1} x\{0\} \rightarrow E: x \mapsto e_{0}$
thinking of g as a homotopy of $\rho \circ \tilde{g}_{0}$
the $H L P \Rightarrow \exists a$ lift $\tilde{g}: D^{n-1} \times[0,1] \rightarrow E$ of g and since $p \circ \tilde{g}\left(\partial\left(D^{n-1} \times\left\{_{0}, \partial\right)\right)=\left\{b_{0}\right\}\right.$

$$
\begin{aligned}
& \tilde{g}\left(\partial\left(D^{n-1} \times[0,1)\right) \subset F=\rho^{-1}\left(b_{0}\right)\right. \\
& \therefore[\tilde{g}] \in \pi_{n}(E, F)
\end{aligned}
$$

clearly $\rho_{x}([\tilde{g}])=[g]$

Clam p_{*} is infective
Suppose $f:\left(D_{1}^{n} \partial D^{n}\right) \rightarrow(E, F)$ and $p_{x}(\{f])=[0] \in \pi_{n}\left(B, b_{0}\right)$
ie. $p \circ f \simeq$ constant bo map by
the homotopy $H:\left(D_{1}^{n}, \partial D^{n}\right) \times[0,1] \rightarrow\left(B, b_{0}\right)$
so $H(x, 0)=p \circ f(x), H(x, 1)=b_{0}$
and $H\left(\partial D^{n} x\{0,1]\right)=\left\{b_{0}\right\}$

base pt in ∂D^{n}
let $C=\left(\right.$ ubhd s_{0} in $\left.\partial D^{n}\right) \times[0.1]$
and $A=\left(D^{n} \times\{0\}\right) \cup C$
as in proof of $T^{\underline{m}} 4, \quad D^{n} \times[0,1] \cong A \times[0,1]$
so H is a map $A \times[0,1] \rightarrow B$
note: f on $D^{n} \times\{0\}$ and the constant map
to e_{0} is a lift of H on $A \times\{0\}$
so $H C P \Rightarrow \exists o$ lift $\tilde{H}: A \times[0,1] \rightarrow E$ of H and this gives

$$
\tilde{H}:\left(D^{n}, \partial D^{n}\right) \times[0,1] \rightarrow E
$$

that is a ho motopy of f rel ∂D^{n} and rel so to a map with image in F
\therefore by lemma $I .16,[f]=0$ in $\pi_{n}(E, F)$

Cor 7:

$$
F \rightarrow E
$$

if ${\underset{B}{L P}}^{L_{P}}$ is a fibration, then we get a long exact sequence

$$
\ldots \rightarrow \pi_{n}(F) \xrightarrow{2_{*}} \pi_{n}(E) \xrightarrow{p_{*}} \pi_{n}(B) \xrightarrow{\partial} \pi_{n-1}(F) \rightarrow \ldots
$$

where 1 is inclusion and

$$
\pi_{n}(B) \cong \pi_{n}(E, F) \rightarrow \pi_{n-1}(F) \text { is }
$$

from lemma 6 and Thu I. 17

Proof: Th $-\underline{I} .17$ gives

$$
\ldots \rightarrow \pi_{n}(F) \rightarrow \pi_{n}(E) \rightarrow \pi_{n}\left(E_{1} F\right) \rightarrow \pi_{n-1}(F) \rightarrow \ldots
$$

now apply lemma 6
Cor 8:

$$
\pi_{k}\left(S^{2 n+1}\right) \cong \pi_{k}\left(c P^{n}\right) \text { for } k>2
$$

in particular $\pi_{3}\left(S_{\mathbb{C P}}^{2}\right) \cong \pi_{3}\left(S^{3}\right) \cong \mathbb{Z}$

Proof: recall we hove the Hop fibration

$$
\begin{aligned}
S^{\prime} \rightarrow & S^{2 n+1} \\
& \underset{c \rho^{n}}{ }
\end{aligned}
$$

so $\quad \pi_{k}\left(s^{\prime}\right) \rightarrow \pi_{k}\left(s^{2 n+1}\right) \rightarrow \pi_{k}\left(\mathbb{C} \rho^{n}\right) \rightarrow \pi_{k-1}\left(s^{\prime}\right)$
since \mathbb{R} is the universal cover of S^{\prime}

$$
\pi_{n}\left(s^{\prime}\right)=\pi_{n}(\mathbb{R})=0 \quad \forall k>1
$$

\therefore if $k>2$ then $k-1>1$ and we get

$$
\begin{aligned}
& 0 \rightarrow \pi_{k}\left(S^{2 n+1}\right) \rightarrow \pi_{k}\left(C P^{n}\right) \rightarrow 0 \\
& \text { and } \therefore \pi_{k}\left(S^{2 n t 1}\right) \cong \pi_{k}\left(\mathbb{C} P^{n}\right)
\end{aligned}
$$

note: also hove

$$
\begin{gathered}
\pi_{2}\left(s^{3}\right) \rightarrow \pi_{2}\left(s^{2}\right) \rightarrow \underset{\substack{11 s \\
0}}{\pi_{1}\left(s^{1}\right) \rightarrow} \underset{\pi_{1}}{\pi_{11}}\left(s^{3}\right) \\
\mathbb{Z}
\end{gathered}
$$

so $\pi_{2}\left(s^{2}\right) \cong \mathbb{Z}$ with out using Herewicz
Cor 9:
X path connected then

$$
\pi_{k}(x) \cong \pi_{k-1}(\Omega x)
$$

loop space
Remark: we already know this from Cor I. 8 but this is a different way to see it

Proof: recall above we constructed the libration

$$
\begin{array}{r}
\Omega(x) \rightarrow P(x) \\
\stackrel{\downarrow}{x}
\end{array}
$$

and $P(x)$ contractible so

$$
\begin{gathered}
\pi_{k}(P(x)) \rightarrow \pi_{k}(x) \rightarrow \pi_{k-1}(\Omega x) \rightarrow \prod_{k-1}^{\prime \prime}(P(x)) \\
0
\end{gathered}
$$

so $\pi_{n}(x) \cong \pi_{n-1}(\Omega x)$
Cor $10:$

$$
\begin{aligned}
& \pi_{k}(O(n-1)) \cong \pi_{k}(O(n)) \text { for } k<n-2 \\
& \pi_{k}(O(n)) \cong \pi_{k}(U(n-1)) \text { for } k<2 n-2
\end{aligned}
$$

Proof: recall $V_{n, k}=k$-frames in \mathbb{R}^{n}

$$
\begin{aligned}
& \cong O(n) / O(n-k) \\
\text { and } V_{n, 1} & \cong s^{n-1}
\end{aligned}
$$

so $O(n-1) \rightarrow O(n)$
is a fiber bundle

$$
\therefore \pi_{h+1}\left(s^{n-1}\right) \rightarrow \pi_{k}(O(n-1)) \rightarrow \pi_{h}(O(n)) \rightarrow \pi_{k}\left(s^{n-1}\right)
$$

if $k<n-2$ then $k+1<n-1$ so

$$
\pi_{n}(O(n-1)) \cong \pi_{n}(O(n))
$$

similarly $V_{n, k}(\mathbb{C})=$ complex k-trams in \mathbb{C}^{n}

$$
=U(n) / U(n-k)
$$

so $U(n-1) \rightarrow U(n)$

$$
s^{2 n-1}
$$

gives second result

Cor $10 \Rightarrow$ for large $n, \pi_{h}(O(n))$ is independent of k small
note: we hove inclusions

$$
\begin{aligned}
& O(1) \hookrightarrow O(2) \longleftrightarrow O(3) \hookrightarrow \ldots(k) \hookrightarrow \ldots \\
& A \longmapsto\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right) \longmapsto \ldots \\
& \text { let } O= \lim _{n \rightarrow \infty} O(n)=\bigcup_{n=1}^{\infty} O(n) \\
& O=\lim _{n \rightarrow \infty} U(n)=\bigcup_{n=1}^{\infty} U(n)
\end{aligned}
$$

easy to see $\pi_{k}(O)=\lim _{n \rightarrow \infty} \pi_{k}(O(n))$
τ constant at sone point
so $\left.\pi_{k}(0) \cong \pi_{k} l O(n)\right)$ for $n>k+2$

$$
\pi_{k}(u) \cong \pi_{k}(U(n)) \text { for } n>\frac{k+2}{2}
$$

Big Theorem (Bott Periodicity)

$$
\begin{aligned}
& \pi_{k}(0) \cong \pi_{k+8}(0) \\
& \pi_{k}(0) \cong \pi_{k+2}(0)
\end{aligned}
$$

one can show:

$$
\begin{aligned}
& k \\
& k \\
& \pi_{k}(0) \\
& \mathbb{Z} / 2 \\
& \mathbb{Z} / 2
\end{aligned} 00 \begin{array}{lllllll}
& 0 & 0 & 0 & 0 & \mathbb{Z} \\
\pi_{k}(0)=\left\{\begin{array}{llllll}
0 & & k \text { even } \\
\mathbb{Z} & & k \text { odd }
\end{array}\right.
\end{array}
$$

note: $\quad S O(n) \rightarrow O(n)$

$$
\underset{\{ \pm 1\}}{\downarrow} \text { is a bundle }
$$

So long exact sequence in π_{k} says

$$
\begin{aligned}
& \pi_{k}(S O(n)) \cong \pi_{k}(O(n)) \quad \forall k>0 \\
& s U(n) \rightarrow U(n) L^{\prime} \quad \text { is a bundle } \\
& S^{\prime} \\
& \text { so get } \pi_{k}(S U(n)) \cong \pi_{k}(U(n)) \forall k>1
\end{aligned}
$$

Cor 11:

$$
\begin{aligned}
& \pi_{j}\left(V_{n, k}(\mathbb{R})\right)= \begin{cases}0 & \text { for } j<n-k \\
\mathbb{Z} & j=n-k \text { even or } k=1 \\
\mathbb{Z} / 2 & j=n-k \text { odd }\end{cases} \\
& \pi_{j}\left(V_{n, k}(\mathbb{C})\right)= \begin{cases}0 & \text { for } j \leq 2(n-k) \\
\mathbb{Z} & j=2(n-k)+1\end{cases}
\end{aligned}
$$

Sketch of Proof:
recall $V_{n+1, k+1}=\frac{O(n+1)}{O(n-k)}=\frac{5 O(n+1)}{5 O(n-k)}$
so $V_{n, k}=\frac{S O(n)}{S O(n-k)} \subset V_{n+1, k+1}$
and

$$
V_{n, k} \longrightarrow V_{n+1, k+1}
$$

start with $k=1$:

$$
\begin{aligned}
s^{n-1} \longrightarrow & V_{n+1,2} \\
& \downarrow^{p} \\
& s^{n}
\end{aligned}
$$

so $\pi_{j}\left(s^{n}\right) \xrightarrow{\partial} \pi_{j-1}\left(s^{n-1}\right) \rightarrow \pi_{j-1}\left(v_{n+1,2}\right) \rightarrow \pi_{j-1}\left(s^{n}\right)$
it $j \leq n-1$, then $\pi_{j}\left(s^{n}\right)=0=\pi_{j-l}\left(s^{n}\right)$

$$
\text { so } \pi_{j-1}\left(v_{n \in 1,2}\right)=\pi_{j-1}\left(s^{n-1}\right)=0
$$

for $j=n$ we get

$$
\underset{\substack{\text { sill }}}{\pi_{n}\left(s^{n}\right) \xrightarrow{2} \pi_{n-1}\left(s^{n-1}\right) \rightarrow \pi_{n-1}\left(V_{n+1,2}\right) \rightarrow 0}
$$

so $\pi_{n-1}\left(V_{n+1,2}\right) \cong \pi_{1-1}\left(s^{n-1}\right)$ in ∂
recall ∂ is defined by taking $f:\left(D_{1}^{1}, \partial D^{n}\right) \rightarrow\left(S^{1}, s_{0}\right)$
living to get $\tilde{f}:\left(D^{n}, \partial 0^{n}\right) \rightarrow V_{n+1,2}$ and taking $f\left(y 0^{n} i \partial 0^{n} \rightarrow S^{n-1}\right.$

Facts: 1) \exists a vector field v on S^{n} with a single zero at s_{0}, its indert is $\begin{cases}0 & \text { n odd } \\ 2 & \text { n even }\end{cases}$
egg. $n=1$

$$
n=2
$$

(0)
2) if $f:\left(D_{1}^{n}, D^{n}\right) \rightarrow S^{n}$ is the quotient mos $D^{n} \rightarrow S^{n}$
(so figenates $\pi_{1}\left(s^{n}\right)$)
then $\tilde{f}: S_{n!11}^{n}\left\{s^{\circ}\right\} \rightarrow V_{n+1,2}$

note: $p \circ \tilde{f}=f$ (p is project to first coordmite)
3) index of v is the degree of $\left.\tilde{f}\right|_{\partial D}: \partial D \rightarrow s^{n-1}$
so $\partial[f]=\operatorname{deg}(f)[g]$ where g is a generator of

$$
\pi_{n-1}\left(s^{n-1}\right)
$$

$$
\therefore \pi_{n-1}\left(V_{n+1}, 1\right)= \begin{cases}\mathbb{Z} & n=n-k \text { odd } \\ \mathbb{Z} / 2 & n=n-k \text { even }\end{cases}
$$

so result true for $k=1$
now induct on k : assume result is true for for k

$$
\text { now } \pi_{j+1}\left(s^{n}\right) \rightarrow \pi_{j}\left(V_{n, k}\right) \rightarrow \pi_{j}\left(V_{n+1, k+1}\right) \rightarrow \pi_{j}\left(S^{n}\right)
$$

for $j<n-k$ we know $\pi_{j}\left(V_{n, k}\right)=0$ so

$$
\pi_{j}\left(V_{n+1, k+1}\right)=0
$$

and for $J=n-k \quad \pi_{j}\left(V_{n+1, k+1}\right) \cong \pi_{j}\left(V_{n, k}\right) \cong \begin{cases}\mathbb{z} & n-k \text { odd } \\ \mathbb{Z} / 2 & n-k \text { even }\end{cases}$ $V_{n, k}(\mathbb{C})$ similar

